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Abstract—Considering the principles of continuity, invariance, multiplication, and ranking, we
develop a novel optimal signal recognition method under essential a priori uncertainty, with
application to real-time information-measuring systems. By assumption, in addition to ran-
dom noise with an unknown distribution law but a given correlation matrix, the observation
equation may contain a regular interference with an analytical finite-spectral representation
and an irregular interference without any effective probabilistic model. The latter interference
can be described only by introducing some numerical characteristics and constraints confirmed
by the operation practice of a particular system. This method is invariant to the above in-
terferences, does not require traditional state-space expansion, and ensures the decomposition
of the computational procedure. We analyze random and methodological errors as well as the
computational effect achieved. An illustrative example is given.
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1. INTRODUCTION

For a modern information-measuring system (hereinafter referred to as a/the system), signal
recognition is one of the most important problems; it includes signal detection, discrimination,
resolution, smoothing, parameter estimation, etc. [1–18].

In the sense of applications, of major interest are real-time systems under essential uncertainty
and strict requirements to recognition quality, not only on the average (over an entire ensemble of
realizations) but also in a single case (for one fixed sample of measurements). The matter concerns
a system with quite high risks (losses) from an incorrect decision in such a case.

Essential uncertainty arises, e.g., when real measurements are subjected to random noise with
an unknown distribution and, moreover, to regular and irregular interferences. In this case, the
noise information is limited only by its correlation matrix; the regular interference information, by
a given finite set of its basis functions; the irregular interference information, by some numerical
characteristics and constraints for a particular system. For example, the sample clogging factor
can be one such characteristic.

Essential uncertainty is often eliminated using the least squares (LS) method or one of its
modifications in a simple or extended version [5, 7–9, 14–18]. By the well-known Gauss–Markov
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theorem, this method yields the best estimates on average; for example, see [5, p. 34]. Less common
methods include maximum posterior probability density, maximum likelihood, linear and nonlinear
filtering, and some others [1–7, 11, 14]. As a rule, these methods require a rather large amount
of a priori statistical information and are difficult to implement in real time (especially when
expanding the state space). In addition, they are often unstable (in computational terms) and
have poor convergence in iterative calculations, e.g., in the case of unsuccessfully assigned initial
conditions or ravine-type objective functions. Such methods are most often used at stages related
to mathematical modeling when justifying the potential capabilities of the system. In the single
cases mentioned (when one fixed sample is involved), the estimation results can cause significant
losses, especially under an irregular interference.

The method of generalized invariant-unbiased estimation (GIUE) [18, 19] was developed for any
linear numerical characteristics of useful signals (e.g., spectral coefficients, derivatives of different
orders, integrals, smoothed values, etc.) under a regular interference (sometimes called signal-like,
systematic, singular, or dynamic) without state space expansion. GIUE autocompensates for a
regular interference, smoothens random noise, and yields optimal estimates with the minimum
trace of the correlation matrix of estimation errors; no a priori information about the distribution
law is required, and it suffices to know only the correlation matrix for a given noise. The method
ensures the maximum possible decomposition of the computational procedure, which leads to the
inversion of matrices of significantly lower dimensions compared to the extended least squares (XLS)
method.

However, the GIUE capabilities are significantly limited if measurements contain both regular
and irregular interferences (e.g., in the form of separate single pulses or packets of different-shape
pulses with unknown parameters). An irregular interference can occur both on the entire obser-
vation interval and on separate, a priori unknown, parts of this interval and is poorly formalized
(e.g., within finite-analytical spectral analysis). As a rule, an attempt to introduce additional basis
functions for describing an irregular interference sharply increases dimension and causes signifi-
cant errors. Under essential uncertainty and real observational conditions, expanding the spectral
composition of the total interference (regular plus irregular interferences) requires inverting ill-
conditioned matrices of too high dimensions, which strongly distorts the results of measurement
processing within GIUE.

Below we develop a novel signal recognition method inheriting all the GIUE advantages without
state space expansion. Therefore, it is possible to implement the corresponding algorithms in real
time for the system under uncertainty. This method provides a trade-off between average estimation
(based on the conditions of unbiasedness, invariance to a regular interference, and the minimum
trace of the correlation matrix of errors) and partial estimation (for a fixed sample) considering the
minimum influence of an irregular interference on the resulting estimate.

To avoid rather cumbersome calculations, the presentation below will mainly focus on the prob-
lem of estimating the linear parameters of signals. However, we will also discuss appropriate
generalizations and practical recommendations for extending the results to other problems related
to signal recognition, including those with nonlinear parameters (by analogy with [19]).

2. MATHEMATICAL FORMULATION OF THE RECOGNITION PROBLEM
IN THE CASE OF ESSENTIAL A PRIORI UNCERTAINTY

On a given time interval [0, T ], we introduce a basic grid C0 =
{
tn, n = 1, N0

}
of nodes and

write the following observation equation on this grid:

H0 = S0 +Θ0 +D0 +Ξ0, (1)
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where H0 =
[
hn, n = 1, N0

]T
, S0 =

[
sn(A), n = 1, N0

]T
, Θ0 =

[
θn(Bθ), n = 1, N0

]T
, D0 =[

qndn(Bd), n = 1, N0

]T
, and Ξ0 =

[
ξn, n = 1, N0

]T
are the vectors of samples of an input obser-

vation h(t), a useful signal s(t,A), a regular interference θ(t,Bθ), an irregular interference d(t,Bd),
and noise ξ(t), respectively, hn = h(tn), sn(A) = s(tn,A), θn(Bθ) = θ(tn,Bθ), dn(Bd) = d(tn,Bd),

and ξn = ξ(tn); A =
[
am,m = 1,Ms

]T
, Bθ =

[
bθr, r = 1,Mθ

]T
, and Bd =

[
bdr, r = 1,Md

]T
are the

unknown vector spectral coefficients of the linear decompositions of the signal, regular, and ir-
regular interference, respectively; finally, qn ∈ {0, 1} is the indicator of zero and nonzero irregular
interference samples, where

∑N0
n=1 qn = Md and the parameter Md corresponds to the real number

of nonzero irregular interference samples in the observation equation (1).

Let {t1, t2, . . . , tMd
} denote the set of nodes associated with nonzero irregular interference sam-

ples, where tm ∈ {t1, t2, . . . , tN0} and tm+1 > tm. To describe the irregular interference, we use the
following approach. Let Kmax ∈ {0, 1, . . .} be the maximum possible number of nodes associated
with the irregular interference, i.e., Md � Kmax. We require the condition

Nmin +Kmax � N0, (2)

whereNmin is the minimum number of input observation samples sufficient to qualitatively recognize
the useful signal in the absence of regular and irregular interferences.

We will consider different time grids of nodes of length N for which

Nmin � N � N0. (3)

With this descriptive approach to irregular interferences, their nonzero samples can take arbi-
trary values (including anomalous ones) as well as be scattered (single) or concentrated (in packets).
In physical channels, such interferences may correspond, e.g., to pulses of various shapes, durations,
and intensities. These interferences are often due to various transients, switching, hashing, natural
and artificial disturbance, etc., and may be masked by signal and noise. Nonzero irregular inter-
ference samples can be arbitrarily located on the segment [0, T ], and there exists no universal and
satisfactory model to describe them. The only way to consider irregular interferences is to impose
some quantitative constraints (like (2) and (3)) matching the operation practice of a particular
system.

For arbitrary values ofA,Bθ, andBd, we use the following linear finite-dimensional combinations
(the signal and regular interference models widespread in practice):

s(t,A) = ATΨ(t), (4)

θ(t,Bθ) = BT
θ Ωθ(t), (5)

d(t,Bd) = BT
dΩd(t), (6)

where Ψ(t) =
[
ψm(t),m = 1,Ms

]T
, Ωθ(t) =

[
ωθr(t), r = 1,Mθ

]T
and Ωd(t) =

[
ωdr(t), r = 1,Md

]T
are given basis functions of the signal, regular, and irregular interference, respectively, ωdr (tr) = 1,
and ωdr(t) = 0 for all t �= tr.

Suppose that the extended functional basis {Ψ(t),Ωθ(t),Ωd(t)} is linearly independent on the
grid C0 (by analogy with [18, 19]). The noise Ξ0 is characterized by zero mean and a correlation
matrix KΞ0 .

Note that quite rare anomalous outliers of the noise ξ(t) are further associated with irregular
interferences, i.e., they are combined with the corresponding nonzero coordinates of the vector D0.
Thus, in any sample Ξ0, all coordinates can be enclosed in gates of a size determined by one of the
well-known rules (e.g., by the three-sigma rule).
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For the recognition problem, we will consider two main subproblems as follows.

Subproblem 1 (the classical problem of estimating the useful signal parameters) is to construct an
optimal estimate A∗ of the vector A∗ based on the algorithm that autocompensates for the regular
and irregular interferences. Subproblem 2 is to construct estimates A∗ and B∗ for the vectors A
and B∗, respectively, invariant to the irregular interference. In this case, the estimation of the
signal parameters shall autocompensate for the regular interference and, vice versa, the estimation
of the regular interference parameters shall autocompensate for the signal.

Based on (1)–(6), it is required to develop an optimal recognition method (for the two main
subproblems above) under essential a priori uncertainty (using only the correlation matrix KΞ0

as statistical information) without state space expansion. In both subproblems, optimality means
that the estimates shall be unbiased, have the minimum trace of the correlation matrices of esti-
mation errors, and provide a significant computational advantage over XLS and GIUE, in terms of
decomposition and reduction in the amount of calculations and a gain in accuracy due to inverting
matrices of smaller dimensions.

3. A GENERAL APPROACH TO SIGNAL RECOGNITION BASED ON THE PRINCIPLES
OF CONTINUITY, MULTIPLICATION, AND RANKING

The approach proposed below involves the principle of a continuous dependence of recognition
quality on the parameters of the time grid. In particular, the successive reduction of the volume of
a sufficiently large grid (by removing certain nodes) leads to a smooth evolution of the accuracy of
the resulting estimate. This effect also concerns a continuous change in the position of grid nodes
on a given time interval.

Assume that a set of different reduced grids can be formed from the basic grid C0 and its

variants obtained by removing some nodes:
{
Cj, j = 1, J − 1

}
(where J � 2, Cj =

{
tjn, n = 1, Nj

}
,

Nj < N0, tjn ∈ C0, tjn �= tjk ∀n �= k, n, k ∈ 1, Nj , tj,n+1 > tjn).

We represent the entire family of grids C = {C0,C1, . . . ,CJ−1}, including C0, as

C = C# ∪ C∧ ∪ C&. (7)

The symbol C# indicates the set of grids without nodes associated with nonzero irregular inter-
ference samples. Next, the symbol C∧ stands for the set of grids that may contain nodes associated
with normal irregular interference samples. These are the irregular interference samples that, all
together, weakly affect the estimation results. Finally, the symbol C& denotes the set of grids that
may contain nodes associated with both normal and abnormal irregular interference samples that,
all together, devalue the estimation results. The sets C# and C∧ will be called admissible and the
set C& inadmissible.

The main idea of the method is that by handling C# and C∧, one can obtain estimates invariant
(or almost invariant) to regular and irregular interferences (the invariance principle). For this
purpose, we assign to each grid Cj, j = {0, 1, . . . , J − 1} , the observation equation

Hj = Sj +Θj +Dj +Ξj (8)

and the GIUE-optimal estimates

⎧⎪⎨
⎪⎩
A∗

j = PA
j Hj , s∗j

(
t,A∗

j

)
=

(
A∗

j

)T
Ψ(t),

B∗
θj = PB

θjHj, θ∗j
(
t,B∗

θj

)
=

(
B∗

θj

)T
Ωθ(t),

(9)
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where Hj is the vector of the input observation samples H0 corresponding to the reduced grid Cj,
and PA

j and PB
θj are the linear decomposition estimation matrices:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
PA

j =

[
ΛA

θjK
−1
ΞjΨj

(
ΨT

j Λ
A
θjK

−1
ΞjΨj

)−1
]T

,

PB
θj =

[
ΛB

θjK
−1
ΞjΩθj

(
ΩT

θjΛ
B
θjK

−1
ΞjΩθj

)−1
]T

,

(10)

⎧⎪⎨
⎪⎩
ΛA

θj = ENj −K−1
ΞjΩθj

(
ΩT

θjK
−1
ΞjΩθj

)−1
ΩT

θj,

ΛB
θj = ENj −K−1

ΞjΨj

(
ΨT

j K
−1
ΞjΨj

)−1
ΨT

j .
(11)

In formulas (9)–(11), Ψj = [ψjnm, n=1,Nj ,m=1,Ms] and Ωθj = [qjnωθjnr, n=1,Nj , r=1,Mθj ]
are the basis matrices of the signal Sj and interference θj , respectively, ψjnm = ψm(tjn) and
ωθjnr = ωθr(tjn); ENj is an identity matrix corresponding to the dimension of the vector Hj.

If Cj ∈ C#, these estimates will match the corresponding conditions of minimality, unbiasedness,
and invariance [18, 19] (i.e., will be optimal). If Cj ∈ C∧, we obtain quasi-optimal estimates; in the
case Cj ∈ C&, the estimation errors may become unacceptably large.

The multiplication principle consists in the possibility of forming a set of partial estimates
corresponding to the family of grids C = {C0,C1, . . . ,CJ−1} satisfying conditions (2) and (3).

Consider subproblem 1. For each pair of grids Cj and Cm, we form the scalar residuals

ΔAjm(t) = s(t,A∗
j )− s(t,A∗

m) = [(A∗
j )− (A∗

m)]TΨ(t), j,m = 0, J − 1, j > m,

and their norms ΔAjm =
∥∥ΔAjm(t)

∥∥, j,m = 0, J − 1 (any norm of the corresponding functional

space). Based on the norms, we construct a variational series ΔA[v], v = 1, (J2 − J) /2 (a mono-
tonically increasing sequence of scalar residuals), which fully characterizes the quality of all grids
used. If at least one grid in a pair Cj, Cm belongs to the set C&, the corresponding element ΔA[v]

will be in the tail of the variational series. The initial elements of this series will be associated
with the pairs Cj , Cm corresponding to the sets C# and C∧. Thus, under the above constraints,
guaranteed clustering is performed for some elements ΔA[v] of the variational series in a sufficiently
small neighborhood (0, δA), where δA > 0 denotes the truncation parameter of the series. For a
given grid C0, the constant δA is chosen in advance for a particular system, considering the ana-
lytical expressions for the random and methodological errors of the GIUE procedure [18, 19], when
planning a measurement experiment [5].

All the pairs of grids not satisfying the condition

ΔA[v] < δA (12)

are rejected. This is the ranking principle mentioned above.

We introduce several important notions.

Definition 1. A pair of grids Cj, Cm is said to be admissible if condition (12) holds.

Definition 2. An arbitrary irregular interference sample is said to be anomalous if its corre-
sponding node, present in any grid of the set C, violates condition (12). Otherwise, the irregular
interference sample is said to be normal.

Definition 3. A group of two or more samples is said to be anomalous (even if each separate sam-
ple is normal) when the corresponding nodes, present in any grid of the set C, violate condition (12).
Otherwise, the group of irregular interference samples is said to be normal.

Definition 4. The sample clogging factor H0 is the number kd = 100 (Kmax/N0), expressed as a
percentage.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 4 2025
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Since all grids of the set C& violate condition (12), they are automatically rejected. A strict
criterion for the anomalousness of input observation samples H0 sounds as follows: a sample is
anomalous if it never occurs in pairs of grids satisfying condition (12). This criterion can be
somewhat relaxed by considering the rare presence of potentially anomalous samples in the pairs
specified. This is especially relevant in cases of ambiguity about an appropriate class (normal or
anomalous) for a particular sample. Anyway, the criterion allows rejecting both anomalous and
potentially anomalous samples of the input observation. However, the false rejection of some normal
samples is possible.

The anomalousness criterion for a group of samples sounds as follows: a group is anomalous if
it repeatedly occurs in rejected (inadmissible) pairs of grids and never occurs in admissible pairs
of grids (those that have passed rejection).

In general, the ranking principle may lead to situations when the number of good grids satisfying
condition (12) may increase, i.e., some redundancy of private estimates. Consequently, the following
legitimate question arises: how should this redundancy be considered in order to construct a more
reliable resulting estimate?

To construct the resulting estimate A∗ of the vector A, we proceed as follows. Let C∗
j , j = 1, J∗,

denote all the grids included in the admissible pairs. (These grids will be called competing.) For
each fixed grid C∗

j and all other competing grids C∗
m, we form the total scalar residual

Δ∗
Aj =

J∗∑
m=1
m	=j

ΔAjm. (13)

This residual shows the efficiency of the grid C∗
j compared to all other competing grids C∗

m,

m �= j, m ∈ 1, J∗, included in admissible pairs.

Obviously, within the models and constraints adopted, the criterion for selecting the optimal
number j∗ ∈ {1, . . . , J∗} of the optimal grid C∗

j∗ ∈ {C∗
1, . . . ,C

∗
J∗} is as follows:

j∗ = argmin
j

Δ∗
Aj . (14)

This criterion can be easily realized in practice if the matrix of scalar residuals is constructed
for all admissible pairs of time grids. Among the input observation samples corresponding to the
optimal grid C∗

j∗, there are no anomalous samples and anomalous groups of irregular interference
samples; in addition, the estimates ⎧⎨

⎩
A∗

j∗ = PA
j∗Hj∗,

s
(
t,A∗

j

)
=

(
A∗

j∗
)T

Ψ(t)
(15)

will be GIUE-optimal for the grid C∗
j∗.

Let us pass to subproblem 2. It is easily reduced to subproblem 1 by introducing the single

vector of estimated parameters Z =
[
AT,BT

θ

]T
. Due to (9), we can assign to each grid Cj the

GIUE-optimal estimate Z∗
j =

[(
A∗

j

)T
,
(
B∗

θj

)T]T
. Finding the estimate A∗

j requires invariance with

respect to the regular interference (i.e., the parameter Θ0 in (1) is treated as a disturbing factor.)
In turn, finding the estimate B∗

θj requires invariance with respect to the signal S0 (i.e., the signal

now treated as a disturbing factor for the regular interference). The matrices PA
j and PB

θj are used
to find the estimates A∗

j and B∗
θj , respectively; they are formed by (10) and (11). Obviously, to

solve subproblem 2, it suffices to replace ΔA[v], δA, ΔAjm, and Δ∗
Aj in (12)–(14) with ΔZ[v], δZ,

ΔZjm, and Δ∗
Zj, respectively.
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For the grid C∗
j∗, we obtain the following solution of the optimal regular interference identification

problem:

⎧⎨
⎩
B∗

θj∗ = PB
θj∗Hj∗ ,

θ
(
t,B∗

θj∗
)
=

(
B∗

θj∗
)T

Ωθ(t).
(16)

In view of (15) and (16), the final estimate for subproblem 2 is Z∗
j∗ =

[(
A∗

j∗
)T

,
(
B∗

θj∗
)T]T

.

For the method under consideration, it is fundamental to select competing grids C∗
j , j = 1, J∗,

satisfying condition (12) and choose the optimal grid C∗
j∗ among them. Obviously, this is directly

related to the initial set of grids C = {C0,C1, . . . ,CJ−1} satisfying conditions (2) and (3). Modern
advances in the field of parallel computers (especially those on new principles [21–24]) give hope that
the multiplication principle of grids and partial estimates will not become an obstacle for prospective
real-time systems. However, this approach is not possible for all the existing systems, as it may
require a huge number of channels for parallel data processing and significant computational costs.
Therefore, along with the optimal solution, it is necessary to consider quasi-optimal approaches to
the design of reduced grids.

4. SOME RULES FOR BUILDING REDUCED TIME GRIDS

According to the principle of grid multiplication, a set of reduced grids is formed on a given
time interval by some rule χ,

χ : C0 → {Cj}J−1
j=0 , (17)

so that, under some constraints on irregular interferences, the resulting partial estimates
{
A∗

j

}J−1

j=0

and
{
Z∗
j

}J−1

j=0
based on such grids surely include not only bad but also good estimates for which

condition (12) is valid. Obviously, in the general case, the choice of an appropriate rule χ is
ambiguous and depends on a particular system and observation conditions.

Rule 1. Let the system operate a small sample. Using combinatorics and the basic grid C0,
we form all possible reduced grids with the number of nodes not less than Nmin. By the complete
enumeration method, the number of such grids is equal to

J =
N0−Nmin∑

m=0

CNmin+m
N0

, (18)

where CNmin+m
N0

denotes the corresponding binomial coefficient (the number of combinations of
Nmin +m elements in a total of N0 elements).

For a fixed Md, the number of grids not associated with nonzero irregular interference samples
is given by

J =
N∑

m=0

CNmin+m
N0−Md

, (19)

where N = N0 −Nmin −Md.

In the special case when Md = Kmax, we can form the minimum number of such grids, Jmin =∑Nmin
m=0 CNmin+m

N0−Kmax
, where Nmin = N0 −Nmin −Kmax.
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For example, let N0 = 5, Nmin = 3, Kmax = 2, and Md = 1; then we have J = 16, Jmin = 1, and
J = 5. If an irregular interference sample (for the case Md = 1) is anomalous, the boundedness
condition (12) will hold for five grids and fail for eleven. Among the good grids, four will have a
length of Nj = 3, j = 1, 4, and the fifth grid a length of N5 = 4.

Rule 2. For large samples, a more suitable rule χ is based on representing the grid C0 as L
elementary grids C l adjacent to each other (the full cover method):

C0 =
L⋃
l=1

Cl, Cl ∩Cd = ∅, ∀l �= d l, d ∈ 1, L, (20)

where Cl =
{
tlm,m = 1,Ml

}
is the elementary grid of nodes tlm ∈ C0, lm ∈ 1, N0,

∑L
l=1 Ml = N0.

One should keep in mind that the grid Cl matches only the neighbor nodes from the grid C0, i.e.,

those following each other:
(
tlm+1 = tl1+m,m = 0,Ml − 1

)
. It is easiest to consider the elementary

grids Cl of the same length by taking Ml = M and L ·M = N0.

From L elementary grids, using combinatorics, we can also form the desired family of different

reduced grids
{
Cj, j = 1, J − 1

}
, with the number of nodes not less than Nmin. In contrast to

Rule 1, now potential anomalousness is associated with individual elementary grids. Given the
maximum possible number of elementary potentially anomalous grids, it is easy to find the total
number of reduced grids not containing these regions and other characteristics of the rule χ.

Rule 3. Along with (20), the partial cover method can be used:

C0 ⊃
L⋃
l=1

Cl. (21)

This method can minimize computations but involves possible errors in decision-making.

Rule 4. To avoid such errors, it is possible to realize the rule χ step by step using different sets
of elementary grids at each step. In this case, we propose the following step-by-step methods of
full and partial cover by elementary grids of length Mli:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C0i =
Li⋃
l=1

Cli, i = 1, I,

C0i ⊃
Li⋃
l=1

Cli, i = 1, I,

(22)

where i is the step number and Li > L.

According to (22), at each step i we construct a family of grids Ci instead of C and check
condition (12) for all its elements. If this condition completely fails, it is necessary to proceed
to the next step. If this condition is valid at least for one reduced grid from CI , this grid will
be considered optimal. Obviously, the step-by-step method suits well for large grids C0 owing to
insignificant computational costs (compared to the complete enumeration method), but it may lose
in terms of efficiency for large I. However, under conditions (2) and (3), such a situation is quite
rare.

Rule 5. An even simpler way of building reduced grids is possible when the system includes an
input observation analyzer to identify potentially anomalous regions on the segment [0, T ] (in terms
of the presence of irregular interferences in them). By excluding the nodes corresponding to these
regions from C0, we can form the desired family of reduced grids satisfying conditions (2) and (3).

The choice of an appropriate rule to form reduced grids entirely depends on the system under
consideration and the requirements imposed on it. Formulas (17)–(22) are quite convenient for the
quantitative justification of reduced grids.
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5. RECOGNITION ALGORITHMS UNDER UNCERTAINTY

The recognition algorithm for subproblem 1 includes the following steps.

Step 1.1. Based on C0, construct the set of grids
{
Cj, j = 0, J − 1

}
.

Step 1.2. For each grid Cj, find the optimal estimation matrix PA
j .

Step 1.3. For each grid Cj, find the estimate A∗
j = PA

j Hj .

Step 1.4. For each pair Cj, Cm, form the scalar residual ΔAjm.

Step 1.5. Based on all residuals ΔAjm, construct the variational series ΔA[v], v = 1,
(
J2 − J

)
/2.

Step 1.6. Based on the variational series and condition (12), form the set of competing grids C∗
j ,

j = 1, J∗.
Step 1.7. For the competing grids, calculate the total residuals Δ∗

Aj , j = 1, J∗.
Step 1.8. Based on the criterion (14), find the optimal number j∗ ∈ {1, . . . , J∗} of the optimal

grid C∗
j∗.

Step 1.9. Using the matrix PA
j∗ and the grid C∗

j∗, calculate the estimate A∗
j∗ for the vector A

and the estimate s
(
t,A∗

j∗
)
=

(
A∗

j∗
)T

Ψ(t) for the useful signal s (t,A) .

The recognition algorithm for subproblem 2 includes the following steps.

Step 2.1. Based on C0, construct the set of grids
{
Cj, j = 0, J − 1

}
.

Step 2.2. For each grid Cj, find the optimal estimation matrices PA
j and PB

θj .

Step 2.3. For each grid Cj, find the estimates A∗
j and B∗

θj .

Step 2.4. Form the unified vector Z∗
j =

[(
A∗

j

)T
,
(
B∗

θj

)T]T
.

Step 2.5. For each pair Cj, Cm, form the scalar residual ΔZjm.

Step 2.6. Based on all residuals ΔZjm, construct the variational series Δ∗
Zj, j = 1, J∗.

Step 2.7. Based on the variational series and condition (12), form the set of competing grids C∗
j ,

j = 1, J∗.
Step 2.8. For the competing grids, calculate the total residuals Δ∗

Zj, j = 1, J∗.
Step 2.9. Based on the criterion (14), find the optimal number j∗ ∈ {1, . . . , J∗} of the optimal

grid C∗
j∗.

Step 2.10. Using the matrices PA
j∗ and PB

θj∗ and the grid C∗
j∗, calculate the estimate A∗

j∗ for

the vector A and the estimate s
(
t,A∗

j∗
)
=

(
A∗

j∗
)T

Ψ(t) for the useful signal s(t,A), as well as

the estimate B∗
θj∗ for the vector Bθ and the estimate θ

(
t,B∗

θj∗
)
=

(
B∗

θj∗
)T

Ωθ(t) for the regular

interference θ(t,Bθ).

6. A COMPARATIVE ANALYSIS OF THE METHOD

The correlation matrices of the estimation errors on the grid C∗
j∗ are found by the rule⎧⎪⎨

⎪⎩
KA

j∗ = PA
j∗KΞj∗

(
PA

j∗
)T

,

KB
θj∗ = PB

θj∗KΞj∗
(
PB

θj∗
)T

.
(23)

The expression (23) allows one to assess the potential capabilities of the method in each partic-
ular case, considering the requirements for the system.

According to the optimality criterion used, these matrices have minimum traces, i.e.,
SpKA

j∗ → min and SpKB
θj∗ → min in the class of all linear estimates. The methodological error
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due to the finiteness of the representations (4) and (5) can be considered as follows. Let the obser-
vation equation on the optimal grid C∗

j∗ have the form (with irregular interference compensation)

Hj∗ =
(
Sj∗ +ΔSj∗

)
+

(
Θj∗ +ΔΘj∗

)
+Ξj∗, (24)

where ΔSj∗ and ΔΘj∗ are the additive corrections to the signal and regular interference due to
the tails of the functional series used.

In this case, the estimate A∗
j∗ of the vector A (calculated without the corrections) is given by

A∗
j∗ = PA

j∗
(
Sj∗ +ΔSj∗

)
+PA

j∗
(
Θj∗ +ΔΘj∗

)
+PA

j∗Ξj∗, (25)

where the optimal estimation matrix PA
j∗ is found using the finite representations (4) and (5) by

rejecting the tails.

Therefore, assuming Ξj∗ = 0, we have the following representation for the the true value of A:

A =
(
PA

j∗ +ΔPA
j∗
)(
Sj∗ +ΔSj∗

)
+

(
PA

j∗ +ΔPA
j∗
)(
Θj∗ +ΔΘj∗

)
. (26)

The average value of the methodological error is

ΔAj∗ = M
{
A−A∗

j∗
}
= ΔPA

j∗
(
Sj∗ +ΔSj∗

)
+ΔPA

j∗
(
Θj∗ +ΔΘj∗

)
, (27)

where M{·} denotes the expectation operator under M
{
Ξj∗

}
= 0.

Formulas (23)–(27) can be used to select the necessary parameters of the method that minimize
the resulting estimation error in each particular case. Necessary and sufficient conditions for the
existence of a unique solution of the estimation problem within the method require nonsingularity
and some constraints for the ranks of several matrices (by analogy with [18, 19]). In practice, the
given conditions are satisfied by rationally choosing the functional bases used and the number of
degrees of freedom in the signal and regular interference models as well as by setting up appropriate
observation conditions. All these issues concern the planning of a computational experiment and
are not considered further, as separate studies are required in each particular case.

To perform a comparative analysis, we consider several methods: M(1) (XLS), M(2) (GIUE),
and M(3) (the novel method). Each possible irregular interference can be assigned one of the

hypotheses Γl, l = 1, L. Obviously, L = J and, for fixed l, by analogy with (1) and (8), the model
observation is

H0l = S0 +Θ0 +D0l +Ξ0.

The recognition problem based on M(1) is solved by minimizing the quadratic form χ(Zdl) :(
l∗,Z∗

dl

)
= argmin

l,Zdl

χ(Zdl) = argmin
l,Zdl

[
Δ
(
l,Zdl

)]T
(KΞ0)

−1 [Δ(
l,Zdl

)]
, i ∈ {1, 2, 3}, (28)

where Δ
(
l,Zdl

)
= H0 −H0l, H0l = H0l

(
l,Zdl

)
, and Zdl =

[
ZT,BT

dl

]T
=

[
AT,BT

θ ,B
T
dl

]T
.

One measure of the efficiency of M(i) is the dimension of the matrices under inversion. Clearly, for
a fixed l, M(1) requires to invert a matrix of order ρ(1)l = Ms +Mθ +Mdl, where Mdl is the number
of nonzero coordinates in the vector D0l. In turn, M(2) implies the formation of a joint basis matrix
for the regular and irregular interferences; for a fixed l, this leads to the inversion of two matrices of
order ρ(2)s = Ms and ρ(2)θdl = Mθ +Mdl, respectively. Regardless of the number of the hypothesis
under consideration, M(3) requires the inversion of two matrices of orders ρ(3)s = ρ(2)s = Ms and
ρ(3)θ = Mθ. Therefore, we can choose the most preferable method by the criterion

i∗ = argmin
i

ρ(i),

where i, i∗ ∈ {1, 2, 3}, ρ(1) = max
l

{Ms +Mθ +Mdl}, ρ(2) = max
l

{Ms,Mθ +Mdl}, and ρ(3) =

max
l

{Ms,Mθ}.
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As can be seen, in all the cases, ρ(3) � ρ(1) and ρ(3) � ρ(2); in the absence of irregular interference
(but under regular interference), we have ρ(3) < ρ(1) and ρ(3) = ρ(2). Without regular and irregular
interferences, ρ(1) = ρ(2) = ρ(3).

The analysis shows that if the dimension of the regular and irregular interferences is high, the
condition Mθ +Mdl > Ms is valid, and the matrices under inversion are ill-conditioned, M(3) will be
much preferable to M(1) and M(2) in terms of computational stability. (In this case, we always have
ρ(3) < ρ(1) and ρ(3) < ρ(2)). For these conditions, along with ρ(1), ρ(2), and ρ(3), the conditionality
numbers μ(1), μ(2), and μ(3) must be used, which are the stability characteristics of the methods
compared.

To comparatively assess the computational complexity of the methods, we will use the fol-
lowing characteristics: V Σ

(i) (the total number of nodes of the original grid C0 that are used to

test all hypotheses); QΣ
(i) and TΣ

(i) (the total number of operations (addition and multiplication)

and time, respectively, required to realize M(i).) The following characteristics are adopted for
comparative accuracy assessment: Δs(i) and Δθ(i) (the resulting estimation errors of the signal

and regular interference, respectively). They are given by Δs(i) = max
t

∣∣∣s(t,A)− s
(
t,A∗

(i)

)∣∣∣ and
Δθ(i) = max

t

∣∣∣θ(t, Bθ)− θ
(
t, B∗

θ(i)

)∣∣∣ .
Omitting intermediate calculations, we present the final results:

— for the characteristic V Σ
(i),

V Σ
(1) = V Σ

(2) = LN0, V Σ
(3) =

N0−Nmin∑
m=0

CNmin+m
N0

(N0 −m) ;

— for the characteristic QΣ
(i),

QΣ
(1) =

N0−Nmin∑
m=0

{
CNmin+m
N0

[
2N3

0 + 6N2
0 γm +N0

(
4γ2m − 3γm

)
+ 2γ3m − γ2m

]}
,

γm = Ms +Mθ +m,

QΣ
(2) =

N0−Nmin∑
m=0

{
CNmin+m
N0

[
2
(
N3

0 +N2
0ϕm

)
+N0 (4βm − ϕm) + 2(αm − ϕm)

]}
,

βm = η2m +M2
s , αm = η3m +M3

s , ϕm = 2ηm + 3Ms, ηm = Mθ +m,

QΣ
(3) =

N0−Nmin∑
m=0

{
CNmin+m
N0

[
2 (N0 −m)3 + 2 (N0 −m)2 ϕ0 + (N0 −m) (4β0 − ϕ0) + 2α0 − β0

]}
,

α0 = (Mθ +Md)
3 +M3

s , β0 = M2
θ +M2

s , ϕ0 = 2Mθ + 3Ms, η0 = Mθ.

According to the analysis of these expressions, a significant computational gain M(3) over M(1)

and M(2) can be achieved by processing the data on reduced grids of smaller volume (compared to
the original grid C0). This gain also grows with increasing the dimension of the irregular interference.

The calculation of the characteristics TΣ
(i) and ΔθΣ(i) depends on both the initial data of the

problem and the capabilities of the computing environment used.

To test the family of hypotheses, L parallel data processing channels can be organized to per-
form a large amount of vector-matrix computations. However, significant optimization of such
computations is possible since all vectors and matrices used in different channels are obtained by
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an appropriate reduction of the vectors and matrices on the basic grid C0. In other words, most
operations in different channels are repeated.

The novel method can be easily extended to other problems (e.g., detection and discrimination)
related to signal recognition (including those with nonlinear parameters [19]) and solved within the
theory of hypotheses. In this case, the number of parallel data processing channels may increase
significantly, as the reduced grids should be constructed directly for each hypothesis and each node
of the definitional domain of a nonlinear parameter. Here, the most effective approaches to deal
with irregular interferences are the full (20) and partial (21) cover methods, e.g., step-by-step (22).

7. AN ILLUSTRATIVE EXAMPLE

We apply the novel method to the single-position passive ranging of a radiating target with
partially known motion parameters only by energy measurements (the energy method [24, 25]).
Consider a target moving in the direction toward a rangefinder so that the slant range varies

according to the law R(t) = R0 +R
(1)
0 t+ 2−1R

(2)
0 t2, where R0, R

(1)
0 , and R

(2)
0 are the initial range,

radial velocity, and radial acceleration, respectively, before the time instant t = 0. Let the measured

signal (energy parameter) be s(t) = 1− q−1
0 (t), where q0(t) =

[
p−1
0 p(t)

]1/2
and p(t) is the power of

the electromagnetic wave at the rangefinder’s input, p0 = p(0).

The well-known passive location equation for a stationary channel has the form

p = ζ0R
−2,

where p = p(t), R = R(t), and ζ0 = const is a generalized coefficient relating power and range.

Such a simplified model is encountered in practice under several constraints on the observation
conditions of a radiating target [24, 25]. In the case considered here, it will demonstrate well
the effectiveness of the novel method without resorting to complex ranging algorithms for the
nonstationary case.

The required range is given by

R(t) = s−1(t)D0(t)[1− s(t)], t > 0, (29)

where D0(t) =
(
R

(1)
0 t+ 2−1R

(2)
0 t2

)
means the distance traveled by the target in the time t.

Formula (29) serves to calculate the range based on estimates of the parameter s(t) = 1− q−1
0 (t).

Obviously, s(t) can be represented as

s(t) = −
(
R−1

0 R
(1)
0 t+ 2−1R−1

0 R
(2)
0 t2

)
, t > 0.

In view of (4), it follows that s(t) = s(t, a1, a2) = a1ψ1(t) + a2ψ2(t), i.e., Ms = 2, a1 = −R−1
0 R

(1)
0 ,

a2 = −2−1R−1
0 R

(2)
0 , ψ1(t) = t, and ψ2(t) = t2. Thus, after estimating the coefficients a1 and a2 from

measurements of the energy parameter s(t, a1, a2), we can find the desired range by formula (29).
Next, M(3) will be used for estimation whereas M(1) and M(2) for comparative analysis. Note that
all time parameters below are measured in seconds, distances in meters, radial velocity in meters
per second, radial acceleration in meters per second squared, and the sample clogging factor in
percent. The energy parameter is a dimensionless quantity.

For the experiment, we took R0 = 3× 104, R
(1)
0 = 2× 103, R

(2)
0 = 2× 102, T = 10, N0 = 10,

tn − tn−1 = Δt = 1, t1 = 1, t10 = 10, Md = Kmax = 2, Nmin = 6, kd = 20, and Mθ = 0. (In other
words, the influence of the regular interference was neglected.) The measurement noise was modeled
using a random number generator of the Gaussian distribution with the diagonal matrix KΞ0

with the nonzero element σ2
0 = 10−10. For the cases when N � Nmin, and in the absence of an
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irregular interference, the average root-mean-square error of range estimation (over an ensemble
of 500 realizations) by any method must satisfy the condition ΔR � 5× 102.

The computations were carried out in MATLAB ver. R20119b on a PC with a 2.6 GHz quad-core
CPU and 8 GB DDR3 RAM.

Table 1 shows the exact values of the energy parameter on the grid C0.

Table 1

tn 1 2 3 4 5 6 7 8 9 10

sn 0.067 0.147 0.230 0.320 0.417 0.520 0.630 0.747 0.870 1

The following intermediate values were calculated for the initial data: L = J = 386, γm = 2 +m,
βm = m2 + 4, αm = m3 + 8, ϕm = 2m+ 6, and ηm = m, 0 � m � 4.

The final results of the computational experiment (after rounding) are combined in Table 2.

Table 2

M(i)

Characteristics
ρ(i) μ(i) V Σ

(i) QΣ
(i) TΣ

(i) ΔR(i)

M(1) 6 544 3.9× 103 2.5× 106 1.3× 10−3 1.3× 103

M(2) 4 148 3.9× 103 1.9× 106 9.9× 10−4 9.3× 102

M(3) 2 103 2.6× 103 4.7× 105 2.4× 10−4 8.2× 102

According to the data of this table, XLS and GIUE lose to the novel method in all their char-
acteristics even under a small dimension of the matrices inverted. Using the result of [25], we can
consider the nonstationary case (ζ0 �= const) with not only irregular interferences but also regular
ones. In such conditions, the vector of estimated parameters expands, which requires increasing the
volume of the original grid C0. The effect achieved grows significantly with increasing the dimension
of the problem and this volume.

The ranging method considered in this example, in combination with the algorithm proposed
for estimating the energy parameter (based on the novel method), can be used both independently
and with other known passive location methods. The former option can be appropriate when the
energy channel is the only source of reliable information in the rangefinder (e.g., under either the
single-position energy design of the rangefinder or the structural degradation of the two- or multi-
position system: failures of separate positions, the abnormal operation of angular measurement
channels, communication lines, etc.). The capability to solve the ranging problem autonomously
with both regular and irregular interferences can find a wide application in various fields of passive
location systems.

The latter option allows treating the passive-energy method as an alternative method when
constructing a complex algorithm for the reliable operation of an intelligent system under various,
even unfavorable, conditions. In addition to the novel method, such an algorithm can be based
on the angular-measuring energy method and passive methods widely used in practice (difference
ranging, triangulation, etc. as well as their different modifications).

Energy measurements traditionally do not belong to the class of reliable measurements. Hence,
the novel signal recognition method under regular and irregular interferences may improve the
operating efficiency of energy channels with the required accuracy of amplitude and power mea-
surements.

8. CONCLUSIONS

The signal recognition method developed in this paper realizes the principles of continuity, in-
variance, multiplication, and ranking using a family of reduced grids. It can be effectively combined
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with algorithms for orthogonal decomposition and solving ill-posed problems [27–29]. The possi-
bility of decomposing computational procedures, reducing the dimension of matrices inverted, and
decreasing the amount of computations allows solving more efficiently a whole range of applications-
oriented problems with measurement processing in various fields. The signal recognition algorithms
under regular and irregular interferences are not difficult to implement in special-purpose multi-
channel computers for systems operating in real time.

Compact analytical expressions have been derived to select in advance, for a particular applica-
tion, the necessary models of signals and interferences as well as the values of their parameters to
achieve the potential capabilities of the novel method. All computational procedures in each chan-
nel are reduced to the simplest mathematical operations over vectors and matrices; it is possible to
combine this method with traditional approaches to solving applied problems on the optimal and
quasi-optimal processing of measurements.

Advances in parallel computing give hope that any problems related to signal recognition can
soon be solved using the novel method.
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